fulltext.study @t Gmail

N2O decomposition over K-promoted Co-Al catalysts prepared from hydrotalcite-like precursors

Paper ID Volume ID Publish Year Pages File Format Full-Text
47787 46482 2009 7 PDF Available
Title
N2O decomposition over K-promoted Co-Al catalysts prepared from hydrotalcite-like precursors
Abstract

N2O decomposition was investigated over a series of K-promoted Co-Al catalysts. The activity tests showed that doping with K greatly enhanced the catalytic activity of the Co-Al catalyst, and the enhancement was critically dependent on the amount of K and the calcination temperature. When the catalyst had a K/Co atomic ratio of 0.04 and was calcined at 700–800 °C, a full N2O conversion could be reached at a reaction temperature of 300 °C. Moreover, even under the simultaneous presence of 4% O2 and 2.6% water vapor, such high-temperature treated K/Co-Al catalyst exhibited high reactivity and stability, with the N2O conversion remaining at a constant value of 92% over 40 h run at 360 °C. In contrast, non-doped Co-Al catalyst showed a severe activity loss under such reaction conditions. A combination of characterization techniques was employed to reveal the promoting role of K and the effect of calcination temperature. The results suggest that doping with K increases the electron density of Co and weakens the Co–O bond, thus promoting the activation of N2O on the Co sites and facilitating the desorption of oxygen from the catalyst surface. High-temperature calcinations made the desorption of O2 proceed more readily.

Keywords
N2O decomposition; Alkali metal; Potassium; Hydrotalcite
First Page Preview
N2O decomposition over K-promoted Co-Al catalysts prepared from hydrotalcite-like precursors
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Applied Catalysis B: Environmental - Volume 89, Issues 3–4, 15 July 2009, Pages 391–397
Authors
, , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Catalysis
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us