fulltext.study @t Gmail

Pt/titania-nanotube: A potential catalyst for CO2 adsorption and hydrogenation

Paper ID Volume ID Publish Year Pages File Format Full-Text
47900 46485 2008 7 PDF Available
Title
Pt/titania-nanotube: A potential catalyst for CO2 adsorption and hydrogenation
Abstract

The titania-nanotube-supported Pt (Pt/Tnt) catalyst was prepared by the photochemical deposition of Pt complex on the titania-nanotube (Tnt) synthesized by the alkaline hydrothermal method. The physicochemical properties of Pt/Tnt catalyst were investigated by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, N2 adsorption and desorption isotherms, temperature-programmed reduction and X-ray photoelectron spectroscopy. The Pt/Tnt catalyst exhibited mixed-valence Pt nanoparticles (1–3 nm) dispersed uniformly on the surface of Tnt with a Brunauer–Emmett–Teller surface area of 187 m2/g. The results of the temperature-programmed desorption of CO2 indicated the CO2 adsorption capacity of Tnt was highly enhanced by the supported Pt nanoparticles. In situ Fourier-transform infrared spectroscopy demonstrated that the Pt/Tnt catalyst was highly active for the CO2 hydrogenation toward methane production at relatively low temperature of 100 °C.

Keywords
Titania-nanotube; Pt catalyst; CO2-TPD/MS; CO2 hydrogenation
First Page Preview
Pt/titania-nanotube: A potential catalyst for CO2 adsorption and hydrogenation
Publisher
Database: Elsevier - ScienceDirect
Journal: Applied Catalysis B: Environmental - Volume 84, Issues 1–2, 25 October 2008, Pages 112–118
Authors
, , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Catalysis