fulltext.study @t Gmail

Catalytic conversion of commingled polymer waste into chemicals and fuels over spent FCC commercial catalyst in a fluidised-bed reactor

Paper ID Volume ID Publish Year Pages File Format Full-Text
48612 46515 2007 9 PDF Available
Title
Catalytic conversion of commingled polymer waste into chemicals and fuels over spent FCC commercial catalyst in a fluidised-bed reactor
Abstract

A commingled post-consumer polymer (CPW#1) was pyrolysed over spent fluid catalytic cracking (FCC) commercial catalyst (ECat-1) using a laboratory fluidised-bed reactor operating isothermally at ambient pressure. The influence of reaction conditions including catalyst, temperature, ratios of commingled polymer to catalyst feed and flow rates of fluidising gas was examined. The conversion for spent FCC commercial catalyst (82.7 wt%) gave much higher yield than silicate (only 14.2 wt%) and the highest yield (nearly 87 wt%) was obtained for ZSM-5. Greater product selectivity was observed with ECat-1 as a recycled catalyst with about 56 wt% olefins products in the C3–C7 range. The selectivity could be further influenced by changes in reaction conditions. Valuable hydrocarbons of olefins and iso-olefins were produced by low temperatures and short contact times used in this study. It is also demonstrated that the use of spent FCC commercial catalyst and under appropriate reaction conditions can have the ability to control both the product yield and product distribution from polymer degradation, potentially leading to a cheaper process with more valuable products.

Keywords
Polymer waste; Fluidised-bed reactor; Catalyst; Pyrolysis; Selectivity
First Page Preview
Catalytic conversion of commingled polymer waste into chemicals and fuels over spent FCC commercial catalyst in a fluidised-bed reactor
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Applied Catalysis B: Environmental - Volume 69, Issues 3–4, 15 January 2007, Pages 145–153
Authors
, ,
Subjects
Physical Sciences and Engineering Chemical Engineering Catalysis
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us