fulltext.study @t Gmail

A new combination of a membrane and a photocatalytic reactor for the depollution of turbid water

Paper ID Volume ID Publish Year Pages File Format Full-Text
48707 46519 2007 8 PDF Available
Title
A new combination of a membrane and a photocatalytic reactor for the depollution of turbid water
Abstract

This paper describes the combination of a dialysis membrane and a photocatalytic reactor into an original membrane photoreactor (MPR) to mineralize organic compounds contained in artificial turbid waters which are obtained by using natural clay named bentonite. Various systems have been described in the literature, combining photocatalysis with pressure-driven membrane techniques, such as nanofiltration (NF) and ultrafiltration (UF), but these systems can lead to membrane fouling. Only the combination of photocatalysis and membrane distillation avoids this problem, but it needs energy to reach pervaporation phenomena. The MPR system presented here works at ambient temperature, with the membrane used as a barrier for particles and to extract the organic compounds from the turbid water without transmembrane pressure. Thus, we were able to separate the polluted turbid water from the photoreactor compartment and to separate TiO2 continuously from the treated water. The photocatalytic reaction and dialysis were studied separately before the MPR process was developed. A model pollutant, 2,4-dihydroxybenzoic acid (2,4-DHBA), was mineralized from turbid waters by photocatalysis. By means of the membrane, the TiO2 remained in the photoreactor compartment without filtration and bentonite was kept away from the photoreactor.A mathematical model, based on diffusion through the membrane, with zero-order reaction in the reactor, is in good agreement with the experimental data.

Keywords
Photocatalytic degradation; Membrane contactor; Water treatment; Turbid water; Organic pollutants
First Page Preview
A new combination of a membrane and a photocatalytic reactor for the depollution of turbid water
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Applied Catalysis B: Environmental - Volume 72, Issues 3–4, 30 March 2007, Pages 197–204
Authors
, , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Catalysis
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us