fulltext.study @t Gmail

Mineralization of clofibric acid by electrochemical advanced oxidation processes using a boron-doped diamond anode and Fe2+ and UVA light as catalysts

Paper ID Volume ID Publish Year Pages File Format Full-Text
48727 46519 2007 9 PDF Available
Title
Mineralization of clofibric acid by electrochemical advanced oxidation processes using a boron-doped diamond anode and Fe2+ and UVA light as catalysts
Abstract

This work shows that aqueous solutions of clofibric acid (2-(4-chlorophenoxy)-2-methylpropionic acid), the bioactive metabolite of various lipid-regulating drugs, up to saturation at pH 3.0 are efficiently and completely degraded by electrochemical advanced oxidation processes such as electro-Fenton and photoelectro-Fenton with Fe2+ and UVA light as catalysts using an undivided electrolytic cell with a boron-doped diamond (BDD) anode and an O2-diffusion cathode able to electrogenerate H2O2. This is feasible in these environmentally friendly methods by the production of oxidant hydroxyl radical at the BDD surface from water oxidation and in the medium from Fenton's reaction between Fe2+ and electrogenerated H2O2. The degradation process is accelerated in photoelectro-Fenton by additional photolysis of Fe3+ complexes under UVA irradiation. Comparative treatments by anodic oxidation with electrogenerated H2O2, but without Fe2+, yield much slower decontamination. Chloride ion is released and totally oxidized to chlorine at the BDD surface in all treatments. The decay kinetics of clofibric acid always follows a pseudo-first-order reaction. 4-Chlorophenol, 4-chlorocatechol, hydroquinone, p-benzoquinone and 2-hydroxyisobutyric, tartronic, maleic, fumaric, formic and oxalic acids, are detected as intermediates. The ultimate product is oxalic acid, which is slowly but progressively oxidized on BDD in anodic oxidation. In electro-Fenton this acid forms Fe3+–oxalato complexes that can also be totally destroyed at the BDD anode, whereas in photoelectro-Fenton the mineralization rate of these complexes is enhanced by its parallel photodecarboxylation with UVA light.

Keywords
Boron-doped diamond anode; Catalysis; Electro-Fenton; Photoelectro-Fenton; Drug mineralization
First Page Preview
Mineralization of clofibric acid by electrochemical advanced oxidation processes using a boron-doped diamond anode and Fe2+ and UVA light as catalysts
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Applied Catalysis B: Environmental - Volume 72, Issues 3–4, 30 March 2007, Pages 373–381
Authors
, , , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Catalysis
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us