fulltext.study @t Gmail

Development of new catalysts for N2O-decomposition from adipic acid plant

Paper ID Volume ID Publish Year Pages File Format Full-Text
48813 46522 2007 7 PDF Available
Title
Development of new catalysts for N2O-decomposition from adipic acid plant
Abstract

Direct decomposition of N2O was investigated using simulated and real industrial gas stream coming from an adipic acid plant. Two different kinds of catalysts were studied: (i) LaB1−xB′xO3 and CaB1−xCuxO3 (B = Mn, Fe and B′ = Cu, Ni) perovskites (PVKs) and (ii) supported PVKs (10 or 20 wt.%) on γ-Al2O3 and CeO2–ZrO2. The structural modifications induced by the composition of PVK samples affect the catalytic performances: mixed oxide formation in CaMn0.7Cu0.3O3 samples allows to reach the highest values of N2O conversion while the effect of PVK phases is more controversial. The importance of copper on catalytic activities is confirmed by the investigation on CaMn1−xCuxO3 samples. The best results were obtained with a CaMn0.6Cu0.4O3 catalyst calcined at 700 °C for 5 h, in which the presence of copper maximises the Ca3CuMnO6 phase formation. The increase in Cu-content produces a large segregation of CuO despite PVK formation. The best catalyst was tested using industrial gas stream, showing good stability also in the presence of H2O and O2 (8% v/v ) after 1400 h on-stream. To increase surface area, Cu-containing PVKs were deposed on γ-Al2O3 and CeO2–ZrO2, and this latter has been recognised as the best support. Indeed, the activity of the PVKs supported on ceria–zirconia is comparable to and even better than that of the bulk catalysts. A possible explanation regards the support contribution in terms of activity and/or promotion of O2 mobility which enhances the overall activity of the catalyst.

Keywords
Adipic acid plant; CaMnCuO catalyst; CeO2–ZrO2 support; N2O-decomposition; Perovskites; Real industrial conditions; Supported perovskites
First Page Preview
Development of new catalysts for N2O-decomposition from adipic acid plant
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Applied Catalysis B: Environmental - Volume 70, Issues 1–4, 31 January 2007, Pages 323–329
Authors
, , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Catalysis
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us