fulltext.study @t Gmail

Platinum catalysed decomposition of hydrogen peroxide in aqueous-phase pulsed corona electrical discharge

Paper ID Volume ID Publish Year Pages File Format Full-Text
48856 46524 2006 11 PDF Available
Title
Platinum catalysed decomposition of hydrogen peroxide in aqueous-phase pulsed corona electrical discharge
Abstract

Electrical discharges in water produced by a pulsed high voltage power supply generate chemically active species (OH, H2, O2, H2O2, HO2 and O) that are capable of degrading various hazardous chemicals. Previous experimental studies showed that platinum high voltage electrodes in a pulsed corona electrical discharge lead to significantly higher pollutant removal in comparison to that with other electrode materials. In the present work it was observed that when nickel–chromium was used as a high voltage electrode, the pulsed corona electrical discharge in water produces hydrogen peroxide at a constant rate regardless of the initial pH of the solution. Replacement of the nickel–chromium electrode with a platinum high voltage electrode leads to the decomposition of hydrogen peroxide where the rate of decomposition increases with increasing pH. An Eley-Rideal mechanism describing heterogeneous catalytic hydrogen peroxide decomposition is proposed. It is assumed that the decomposition occurs on the surface of the platinum particles ejected from the platinum high voltage electrode. Combination of the experimental measurements and a mathematical model describing the platinum catalysed hydrogen decomposition suggests that the pH dependent hydrogen peroxide decomposition is caused by the adsorption of molecular hydrogen produced by the discharge and hydroxyl ions on the platinum surface. The influence of gases bubbled into the reactor (argon, oxygen and hydrogen) on the hydrogen peroxide decomposition was also tested by both experiments and the model. Finally, the model was utilized to predict molecular hydrogen and oxygen concentrations at three pH values when either nickel–chromium or platinum high voltage electrodes are used.

Keywords
Hydrogen peroxide; Platinum; pH; Hydrogen; Pulsed corona discharge; Eley-Rideal
First Page Preview
Platinum catalysed decomposition of hydrogen peroxide in aqueous-phase pulsed corona electrical discharge
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Applied Catalysis B: Environmental - Volume 67, Issues 3–4, 5 October 2006, Pages 149–159
Authors
, ,
Subjects
Physical Sciences and Engineering Chemical Engineering Catalysis
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us