fulltext.study @t Gmail

Reaction pathway of the catalytic wet air oxidation of phenol with a Fe/activated carbon catalyst

Paper ID Volume ID Publish Year Pages File Format Full-Text
48862 46524 2006 11 PDF Available
Title
Reaction pathway of the catalytic wet air oxidation of phenol with a Fe/activated carbon catalyst
Abstract

Catalytic wet air oxidation (CWAO) of phenol with molecular oxygen using a home-made Fe/activated carbon catalyst at mild operating conditions (100–127 °C; 8 atm) has been studied in a trickle-bed reactor. Ring compounds (hydroquinone, p-benzoquinone and p-hydroxybenzoic acid) and short-chain organic acids (maleic, malonic, oxalic, acetic and formic) have been identified as intermediate oxidation products. CWAO experiments using each one of these intermediates as starting compound have been carried out (at 127 °C and 8 atm) in order to elucidate the reaction pathway. It was found that phenol is oxidized through two different ways. It can be either para-hydroxylated to hydroquinone, which is instantaneously oxidized to p-benzoquinone or para-carboxylated to p-hydroxybenzoic acid. p-Benzoquinone is majorly mineralized to CO2 and H2O through oxalic acid formation whereas p-hydroxybenzoic acid gives rise to short-chain acids. Only acetic acid showed to be refractory to CWAO under the operating conditions used in this work. The catalyst avoids the presence of ring-condensation products in the reactor effluent which were formed in absence of it. This is an additional important feature because of the ecotoxicity of such compounds.

Keywords
Phenol; Fe/AC catalyst; Oxidation pathway; Catalytic wet air oxidation
First Page Preview
Reaction pathway of the catalytic wet air oxidation of phenol with a Fe/activated carbon catalyst
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Applied Catalysis B: Environmental - Volume 67, Issues 3–4, 5 October 2006, Pages 206–216
Authors
, , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Catalysis
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us