fulltext.study @t Gmail

Kinetics of biodegradation of free gossypol by Candida tropicalis in solid-state fermentation

Paper ID Volume ID Publish Year Pages File Format Full-Text
4897 255 2006 7 PDF Available
Title
Kinetics of biodegradation of free gossypol by Candida tropicalis in solid-state fermentation
Abstract

In the present work experiments were carried out to study the effect of free gossypol on the growth of Candida tropicalis ZAU-1, evaluate its ability in biodegrading free gossypol, analyze the time course of solid-state fermentation, and model the microbial growth by determining the kinetics of dry matter weight loss, total carbohydrate concentration and the free gossypol content during solid-state fermentation. Results showed that the biomass in inorganic salts glucose medium were unaffected by free gossypol at 500 and 1000 mg/l levels, compared with the control group (p > 0.05); degradation of free gossypol reached 95.12% and 94.12%, respectively. A logistic equation (R2 = 0.9922), describing the growth model of C. tropicalis ZAU-1 was obtained, with the maximum values of um and Xm at 0.0970 h−1 and 21.8631% of dry matter weight loss, respectively. A good-fit curvilinear regression model was achieved to describe the change pattern of total carbohydrate concentration (R2 = 0.9910), and the biodegradation pattern of free gossypol (R2 = 0.9825). These models could be used to predict the fermentation course by C. tropicalis ZAU-1 under solid-state fermentation.

Keywords
Solid-state fermentation; Biodegradation; Modeling; Free gossypol; Kinetics; Microbial growth
First Page Preview
Kinetics of biodegradation of free gossypol by Candida tropicalis in solid-state fermentation
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biochemical Engineering Journal - Volume 32, Issue 3, 1 December 2006, Pages 226–232
Authors
, ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us