fulltext.study @t Gmail

Improving the dispersion of CeO2 on γ-Al2O3 to enhance the catalytic performances of CuO/CeO2/γ-Al2O3 catalysts for NO removal by CO

Paper ID Volume ID Publish Year Pages File Format Full-Text
49616 46756 2014 5 PDF Available
Title
Improving the dispersion of CeO2 on γ-Al2O3 to enhance the catalytic performances of CuO/CeO2/γ-Al2O3 catalysts for NO removal by CO
Abstract

•The dispersion of CeO2 on γ-Al2O3 is affected by the concentration of HAc aqueous.•The Cu/Ce/Al(20-1) has the highest activity in the NO + CO reaction.•The size of the CeO2 nanoparticles plays a key role in the activity of Cu/Ce/Al.

Acetic acid (HAc) aqueous was used as solvent in wetness impregnation to prepare CeO2-modified γ-Al2O3 support. With the help of HAc, the dispersion of CeO2 on γ-Al2O3 is significantly improved and the size of CeO2 nanoparticles can be controlled through tuning the concentration of HAc aqueous. XPS analysis shows that the percentages of Ce3 + in CeO2 nanoparticles will vary with the size. Then we load CuO on the as-prepared CeO2-modified γ-Al2O3 support and choose NO reduction with CO as a probe reaction to investigate the influences of impregnation solvent on the catalytic properties. The results demonstrate that the CuO/CeO2/γ-Al2O3 prepared in the solvent with volume ratio of 20:1 (H2O:HAc) has the highest activity in NO + CO reaction. Combing the structural characterizations and catalytic performances, we think that the size of the CeO2 nanoparticles should be a key factor that affects the activities of CuO/CeO2/γ-Al2O3. Furthermore, CuO dispersed on CeO2 nanoparticles with an average size of ca. 5 nm should be the highest active sites for NO + CO reaction.

Keywords
HAc; Size effect; NO + CO; CuO/CeO2/γ-Al2O3
First Page Preview
Improving the dispersion of CeO2 on γ-Al2O3 to enhance the catalytic performances of CuO/CeO2/γ-Al2O3 catalysts for NO removal by CO
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Catalysis Communications - Volume 51, 5 June 2014, Pages 95–99
Authors
, , , , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Catalysis
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us