fulltext.study @t Gmail

Percutaneous double lumen cannula for right ventricle assist device system: A computational fluid dynamics study

Paper ID Volume ID Publish Year Pages File Format Full-Text
5136 342 2016 9 PDF Available
Title
Percutaneous double lumen cannula for right ventricle assist device system: A computational fluid dynamics study
Abstract

ObjectivesOur goal is to develop a double lumen cannula (DLC) for a percutaneous right ventricular assist device (pRVAD) in order to eliminate two open chest surgeries for RVAD installation and removal. The objective of this study was to evaluate the performance, flow pattern, blood hemolysis, and thrombosis potential of the pRVAD DLC.MethodsComputational fluid dynamics (CFD), using the finite volume method, was performed on the pRVAD DLC. For Reynolds numbers <4000, the laminar model was used to describe the blood flow behavior, while shear-stress transport k–ω model was used for Reynolds numbers >4000. Bench testing with a 27 Fr prototype was performed to validate the CFD calculations.ResultsThere was <1.3% difference between the CFD and experimental pressure drop results. The Lagrangian approach revealed a low index of hemolysis (0.012% in drainage lumen and 0.0073% in infusion lumen) at 5 l/min flow rate. Blood stagnancy and recirculation regions were found in the CFD analysis, indicating a potential risk for thrombosis.ConclusionsThe pRVAD DLC can handle up to 5 l/min flow with limited potential hemolysis. Further modification of the pRVAD DLC is needed to address blood stagnancy and recirculation.

Keywords
Heart failure; Computational fluid dynamics; Ventricular assist device; Double lumen cannula; Percutaneous
First Page Preview
Percutaneous double lumen cannula for right ventricle assist device system: A computational fluid dynamics study
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biocybernetics and Biomedical Engineering - Volume 36, Issue 3, 2016, Pages 482–490
Authors
, , , , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us