fulltext.study @t Gmail

Comparison of Performance of Different Feature Extraction Methods in Detection of P300

Paper ID Volume ID Publish Year Pages File Format Full-Text
5164 345 2013 18 PDF Available
Title
Comparison of Performance of Different Feature Extraction Methods in Detection of P300
Abstract

The aim of this paper is to design a pattern recognition based system to detect the P300 component in the EEG trials. This system has two main blocks, feature extraction and clas-sification. In the feature extraction block, in addition to morphological features, some new features including intelligent segmentation, common spatial pattern (CSP) and combined features (CSP + Segmentation) have also been used. Two criteria were used for the feature evaluation. Firstly, a t-test has been applied. Secondly, each of these four groups of features was evaluated by a Linear Discriminant Analysis (LDA) classifier. Afterwards, the best set of features was selected by using Stepwise Linear Discriminant Analysis (SWLDA). In the classification phase, the LDA was used as a linear classifier. The algorithm described here was tested with dataset II from the BCI competition 2005. In this research, the best result for the P300 detection was 97.4%. This result has proven to be more accurate than the results of previous works carried out in this filed.

Keywords
P300; brain computer interface (BCI); pattern recognition; feature extraction; classification
First Page Preview
Comparison of Performance of Different Feature Extraction Methods in Detection of P300
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biocybernetics and Biomedical Engineering - Volume 33, Issue 1, 2013, Pages 3–20
Authors
, , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us