fulltext.study @t Gmail

Real-time estimation of the spectral parameters of Heart Rate Variability

Paper ID Volume ID Publish Year Pages File Format Full-Text
5186 347 2015 13 PDF Available
Title
Real-time estimation of the spectral parameters of Heart Rate Variability
Abstract

Spectral Heart Rate Variability (HRV) parameters, LF (low frequency) and HF (high frequency), have an important role in interpreting slower and faster heart rate modulations. An online analysis method of HRV spectral parameters based on the modified Hilbert–Huang Transform (HHT) is proposed in the paper. A number of novel methods have been put forward to meet the demand of causal pre-processing of interbeat time intervals (IBI) series prior to application of HHT. Also in the real-time implementation of the HHT which is the combination of the Empirical Mode Decomposition and Hilbert spectral analysis an original extrapolation method of intrinsic mode function related to LF and HF spectral parameters was applied. The proposed algorithm allows temporal estimation of HRV spectral parameters in real-time with delays being reduced up to 60% with respect to the Short Time Fourier Transform (STFT) analysis. Such reduction in analysis delay can have an important significance in a number of cardiologic invasive procedures, e.g. in cardio-resynchronisation therapy (CRT).

Keywords
Heart Rate Variability; HRV; Instantaneous HRV
First Page Preview
Real-time estimation of the spectral parameters of Heart Rate Variability
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biocybernetics and Biomedical Engineering - Volume 35, Issue 4, 2015, Pages 304–316
Authors
, ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us