fulltext.study @t Gmail

Photoactivated titania-based nanomaterials for potential application as cardiovascular stent coatings

Paper ID Volume ID Publish Year Pages File Format Full-Text
5218 351 2014 9 PDF Available
Title
Photoactivated titania-based nanomaterials for potential application as cardiovascular stent coatings
Abstract

Intravascular stenting of atherosclerotic coronary arteries is a life-saving, widely used procedure in interventional cardiology. Adverse clinical outcomes such as restenosis highlight the importance of meeting the excellent biocompatibility by cardiovascular implants. Many attempts have been made to improve the safety profile of implant surface. We for the first time developed the photoactive intravascular titania-based nanomaterials for the application as cardiovascular stent coating. Photoactive biomaterial deposited on the cardiovascular stent surface demonstrated promising features, making it an excellent substrate for endothelial cells growth and proliferation. The biocompatibility of these coatings has been compared with 316L stainless steel surfaces typically used in commercial coronary stents production. The results of the study proved that the innovative titania-based coatings have better biocompatibility characteristics than the 316L stainless steel and in regard of its antithrombotic potential provided protection against restenosis. Furthermore, the titania coating supported endothelial cells attachment and proliferation, and induced prolonged plasma recalcification time in comparison with stainless steel surface. Innovative photoactive titania coating can be an important factor to prevent the process of the restenosis in the place of implantation.

Keywords
Cardiovascular stent; Photoactive coating; Endothelial cells; Surface charge; Biocompatibility
First Page Preview
Photoactivated titania-based nanomaterials for potential application as cardiovascular stent coatings
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biocybernetics and Biomedical Engineering - Volume 34, Issue 3, 2014, Pages 189–197
Authors
, , , , , , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us