fulltext.study @t Gmail

Cobalt–zinc spinel dispersed over cordierite monoliths for catalytic N2O abatement from nitric acid plants

Paper ID Volume ID Publish Year Pages File Format Full-Text
53583 46975 2015 5 PDF Available
Title
Cobalt–zinc spinel dispersed over cordierite monoliths for catalytic N2O abatement from nitric acid plants
Abstract

•Optimized cobalt–zinc spinel catalyst dispersed over ceria washcoated cordierite.•Co2.6Zn0.4O4/CeO2/cordierite catalyst highly active in deN2O in tail gases (X > 95%, 400 °C).•Reaction rate per spinel content two orders of magnetite outperforming bulk Co2.6Zn0.4O4.

A series of monolithic catalysts with the 0.3 wt.% loading of the (Co,Zn)Co2O4 spinel active phase dispersed on bare and ceria and zincite washcoated cordierite substrates was prepared by impregnation method: (Co,Zn)Co2O4/cordierite, (Co,Zn)Co2O4/ZnO/cordierite and (Co,Zn)Co2O4/CeO2/cordierite. The catalysts were thoroughly characterized (XRD, RS, SEM/TEM/EDX, XRF), and their catalytic deN2O activity was investigated using model gas mixture (2000 ppm N2O/N2), and tail gases (1400 ± 50 ppm N2O, 900 ± 100 ppm NOx, 0.8 ± 0.2 vol.% H2O, 2.0 ± 0.2 vol.% O2) of the nitric acid pilot plant. The reported data points correspond to the measurements performed at possibly the closest tail gas composition. Morphological SEM analysis of the monolith cross-sections indicated the segregation of both ZnO and CeO2 washcoats in the form of islands covered by the (Co,Zn)Co2O4 active phase. The catalytic tests revealed that the monolithic catalysts exhibit high catalytic deN2O activity, reaching X > 96% at 400 °C (model gas) and 450 °C (tail gases) for the best (Co,Zn)Co2O4/CeO2/cordierite system. It was also found that the specific reaction rate per cobalt spinel weight loading for the monolithic catalysts is even two orders of magnitude higher than in the case of the optimized bulk spinel phase. Yet, the beneficial effect of ceria, dominant in the model gas mixture, is largely dumped in tail gases at low temperature. It is however restored above 400 °C, when the poisoning H2O and NOx molecules are desorbed.

Graphical abstractFigure optionsDownload full-size imageDownload high-quality image (134 K)Download as PowerPoint slide

Keywords
N2O decomposition; Cobalt spinel; Monolithic catalyst; Co3O4; Ceria washcoat, Cordierite
First Page Preview
Cobalt–zinc spinel dispersed over cordierite monoliths for catalytic N2O abatement from nitric acid plants
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Catalysis Today - Volume 257, Part 1, 15 November 2015, Pages 93–97
Authors
, , , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Catalysis
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us