fulltext.study @t Gmail

Kinetic model of homogeneous lignocellulosic biomass solvolysis in glycerol and imidazolium-based ionic liquids with subsequent heterogeneous hydrodeoxygenation over NiMo/Al2O3 catalyst

Paper ID Volume ID Publish Year Pages File Format Full-Text
53661 46978 2015 13 PDF Available
Title
Kinetic model of homogeneous lignocellulosic biomass solvolysis in glycerol and imidazolium-based ionic liquids with subsequent heterogeneous hydrodeoxygenation over NiMo/Al2O3 catalyst
Abstract

•Solvolysis of cellulose, hemicellulose, lignin and wood in ionic liquids and glycerol.•Simultaneous solid biomass depolymerisation and hydrolysis, followed by deoxygenation.•Liquefaction model based on lignocellulosic biomass composition, particle size and structure.•Catalytic hydrodeoxygenation, hydrogenation and hydrocracking of solvolytic oil over NiMo/Al2O3.•Application of HDO kinetic model based on lumped group reactivity using FTIR analysis.

Solvolysis of wood, cellulose, hemicellulose and lignin in glycerol was investigated in the presence of homogeneous imidazolium-based ionic liquid (IL) catalysts, where the influence of the IL type, reaction time, temperature and mass transfer limitations on decomposition rate was investigated. The selection of anions (acetate, hydrogen sulphate or chloride/metal halide complex to form a Lewis acid) and cations (butyl-, methyl- or allyl-functionalised imidazolium) importantly influenced conversion, which was as high as 64.4 and 91.5 wt% for the beech wood liquefaction at 150 and 200 °C within 60 min. By following the mass of solid particles and their specific surface area (BET method) as a function of time and temperature, a novel kinetic model for the solvolysis of biomass and its components was developed, where reactive surface area is a key parameter that dictates the rate of solid–liquid reaction; kinetic model also considered different depolymerisation reactivity of main three wood components. Liquefied biomass was consequently hydrodeoxygenated at 225–275 °C in the presence of commercially available sulphide-form NiMo/γ-Al2O3 catalyst. Rates and selectivity of hydrogenolysis, decarbonylation, decarboxylation, hydrogenation and (hydro)cracking were followed and modelled by using previously developed lumped kinetic model, based on the Fourier transformed infrared spectroscopy (FTIR) analysis. The oxygen content of the oil phase of was less than 1.7 wt%.

Graphical abstractFigure optionsDownload full-size imageDownload high-quality image (218 K)Download as PowerPoint slide

Keywords
Solvolysis; Lignocellulose; Liquefaction kinetics; Ionic liquid; Hydrodeoxygenation; Lumped model
First Page Preview
Kinetic model of homogeneous lignocellulosic biomass solvolysis in glycerol and imidazolium-based ionic liquids with subsequent heterogeneous hydrodeoxygenation over NiMo/Al2O3 catalyst
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Catalysis Today - Volume 256, Part 2, 1 November 2015, Pages 302–314
Authors
, , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Catalysis
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us