fulltext.study @t Gmail

Definition and application of ethanol equivalent: Sustainability performance metrics for biomass conversion to carbon-based fuels and chemicals

Paper ID Volume ID Publish Year Pages File Format Full-Text
54000 46992 2015 6 PDF Available
Title
Definition and application of ethanol equivalent: Sustainability performance metrics for biomass conversion to carbon-based fuels and chemicals
Abstract

•Ethanol equivalent (EE) is defined on molar and/or energy equivalency.•EE is the mass of ethanol to deliver the same amount of energy from a feedstock.•EE is the mass of ethanol to produce the same moles of a chemical.•Real ethanol equivalent (EEx) is defined as the EE including the use of 1 unit of bioethanol to produce x units of bioethanol•EEx can be used as a translational tool between fossil- and biomass-based feedstocks and products.

Ethanol equivalent (EE) is defined as the mass of ethanol needed to deliver the equivalent amount of energy from a given feedstock using energy equivalency or produce the equivalent amount of mass of a carbon-based chemical using molar equivalency. The production of ethanol from biomass requires energy, which in a sustainable world could be produced from biomass. Therefore, we also define a real ethanol equivalent (EEx) indicating that the ethanol equivalent also includes the use of 1 unit of bioethanol to produce x units of bioethanol. Thus, the abbreviation EE2.3used in this paper shows a 2.3 output/input bioethanol ratio or efficiency. Calculations of the corresponding mass of corn and size of landwere based on the first generation corn-based bioethanol technology as commercially practiced in the US in 2008. Since the total energy and essential materials requirements of a given process can be calculated, the EE2.3 of a production process or even a total technology can be estimated. We show that the EE2.3 could be used as a translational tool between fossil- and biomass-based feedstocks, products, processes, and technologies. Since the EE2.3 can be readily determined for any given biomass-based technology, the required mass of biomass feedstock, the size of land, and even the volume of water can be calculated. Scenario analyses based on EE2.3 could better visualize the demands of competing technologies on the environment both for the experts and to the general public. While differentiating between 1, 1000, and 100,000 BTUs for different options is rather difficult for most people, comparing the amount of the land needed to produce the same amount of energy or mass via different technologies is more straightforward.

Graphical abstractFigure optionsDownload full-size imageDownload high-quality image (194 K)Download as PowerPoint slide

Keywords
Sustainability; Performance metrics; Ethanol equivalent (EE); Real ethanol equivalent (EEx); Fossil resources; Biomass; Biofuels; Chemicals
First Page Preview
Definition and application of ethanol equivalent: Sustainability performance metrics for biomass conversion to carbon-based fuels and chemicals
Publisher
Database: Elsevier - ScienceDirect
Journal: Catalysis Today - Volume 239, 1 January 2015, Pages 50–55
Authors
, , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Catalysis