fulltext.study @t Gmail

Electrochemical synthesis of fuels by CO2 hydrogenation on Cu in a potassium ion conducting membrane reactor at bench scale

Paper ID Volume ID Publish Year Pages File Format Full-Text
54075 46995 2014 13 PDF Available
Title
Electrochemical synthesis of fuels by CO2 hydrogenation on Cu in a potassium ion conducting membrane reactor at bench scale
Abstract

•Electroassisted CO2 hydrogenation on Cu/K-βAl2O3 under realistic conditions.•Enhancement on CO2 conversion and selectivity to fuels by pumping K to Cu.•Selectivity to C2H6O rose and to CH3OH and C2H5OH decreased with flow rate.•CO2 conversion increased with H2/CO2 ratio and gas flow rate.•Selectivities to CH3OH, C2H5OH and C2H6O showed a maximum for H2/CO2 = 2.

The electrochemical synthesis of fuels by CO2 hydrogenation was studied over a cheap, widespread and non-precious Cu catalyst in a potassium ion conducting membrane (K-βAl2O3) reactor at bench scale, under atmospheric pressure, at relatively low temperatures and high gas flow rates, with varying H2/CO2 ratios and using gas compositions representative of post-combustion CO2 capture exit streams and easily scalable catalyst–electrode configurations, as an approach towards its potential practical application.The Cu catalyst film was deposited by electroless and characterised both as prepared and after testing. The presence of Cu+ and relatively big Cu particles probably determined the high selectivity to CH3OH and the unusual small selectivity to CO and CH4.Selectivities to CH3OH, C2H5OH and C2H6O were electrochemically enhanced up to a maximum of 34, 22 and 3.4 times, respectively. The optimum temperature for the electrochemically assisted CO2 hydrogenation was selected to be 325 °C. Higher gas flow rates favoured the synthesis of dimethyl ether at the expense of methanol and ethanol formation. CO2 conversion increased with H2/CO2 ratio, whereas selectivity to fuels showed a maximum for a H2/CO2 ratio of 2. Selectivity to dimethyl ether follows an opposite trend vs. H2/CO2 ratio with respect to methanol and ethanol ones.

Graphical abstractFigure optionsDownload full-size imageDownload high-quality image (265 K)Download as PowerPoint slide

Keywords
Electrochemical synthesis; Bench scale; CO2 hydrogenation; Cu/K-βAl2O3; CO2 recycling
First Page Preview
Electrochemical synthesis of fuels by CO2 hydrogenation on Cu in a potassium ion conducting membrane reactor at bench scale
Publisher
Database: Elsevier - ScienceDirect
Journal: Catalysis Today - Volume 236, Part A, 1 November 2014, Pages 108–120
Authors
, , , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Catalysis