fulltext.study @t Gmail

Enantioselective hydrogenation of 1-phenyl-1,2-propanedione on immobilised cinchonidine-TiO2 catalysts

Paper ID Volume ID Publish Year Pages File Format Full-Text
54695 47020 2014 11 PDF Available
Enantioselective hydrogenation of 1-phenyl-1,2-propanedione on immobilised cinchonidine-TiO2 catalysts

•Cinchonidine was anchored over anatase-TiO2 using trimethoxysilane as coupling agent.•Pt/TiO2 catalysts, with different wt% cinchonidine, were prepared using H2 high-pressure synthesis.•Pt nanoparticle sizes are independent to the cinchonidine content.•The catalysts displayed dependence between wt% of cinchonidine, and activity–ee(%).•Consecutive cycles showed hydrogenation of Cinchonidine on the surface.

The enantioselective hydrogenation of 1-phenyl-1,2-propanodione (PPD) was investigated using cinchonidine-immobilised Pt/TiO2 catalysts. Prior to metal deposition, TiO2 was chirally modified by the direct anchoring of cinchonidine (CD) using trimethoxysilane as coupling agent (TMS-CD). The catalysts were prepared using a high H2 pressure reduction-deposition method and were characterised by elemental analysis (C, H and N), TG, DRIFT, 13C and 29Si solid-state NMR, N2 adsorption–desorption isotherms, XRD, XPS and HR-TEM. The catalytic activity was evaluated in a batch reactor at 298 K and 40 bar using cyclohexane as solvent with various cinchonidine concentrations. The results indicate that the enantioselectivity was sensitive to the CD surface concentration and the enantiomeric excess of the target product, 1-R-phenyl-1-hydroxy-2-propanone, was in the range of 25–51%. The best catalyst was the one supported on TiO2 with a nominal content of 10 wt% TMS-CD. The effect of the H2 pressure, the concentration of substrate, solvent and recyclability of the catalyst were studied. The results obtained confirmed that the variation of reaction conditions affects both the activity and enantioselectivity due to the substrate adsorption on the metal active sites. Concerning the solvent effect, the enantiomeric excess decreased non-linearly upon increasing the solvent dielectric constant; this was attributed to the interactions between solvents and TMS-CD on the surface. In the catalyst recycling studies, the enantiomeric excess decreased up to 40% after the 3rd reuse. The drop of activity and enantiomeric excess was attributed to the hydrogenation of the immobilised CD.

Graphical abstractFigure optionsDownload full-size imageDownload high-quality image (92 K)Download as PowerPoint slide

TiO2 catalysts; Immobilised cinchonidine; 1-Phenyl-propane-1,2-dione; Enantioselective hydrogenation
First Page Preview
Enantioselective hydrogenation of 1-phenyl-1,2-propanedione on immobilised cinchonidine-TiO2 catalysts
Database: Elsevier - ScienceDirect
Journal: Catalysis Today - Volume 235, 15 October 2014, Pages 226–236
, , , , , ,
Physical Sciences and Engineering Chemical Engineering Catalysis