fulltext.study @t Gmail

Jatropha-oil conversion to liquid hydrocarbon fuels using mesoporous titanosilicate supported sulfide catalysts

Paper ID Volume ID Publish Year Pages File Format Full-Text
55220 47043 2012 7 PDF Available
Title
Jatropha-oil conversion to liquid hydrocarbon fuels using mesoporous titanosilicate supported sulfide catalysts
Abstract

Titanosilicates with 3D-wormhole-like mesoporosity were used as support for hydroprocessing catalysts to increase the triglyceride (jatropha oil) deoxygenation and cracking activity of sulfided Ni-Mo and Co-Mo catalysts. Mesoporous titanosilicate supported Co-Mo catalyst showed improved performance in terms of higher yield of kerosene (jet-fuel) range hydrocarbons, 5-times more isomerized product and slightly improved activity than the traditional alumina supported catalyst. Higher acidity, better metal dispersion and favorable metal–support interactions could be attributed to the improved performance of the former. Among the mesoporous titanosilicate supported catalysts, sulfided Ni-Mo was more active than the Co-Mo catalyst (at lower temperature, 300 °C, 4–8 h−1) but with high selectivity for oligomeric products. But at higher temperatures the Co-Mo catalytic system showed comparable activities with increased yield of cracked products and the heavy range fraction. Response surface plots indicated that there was a combined effect of space velocity and temperature on the conversion at lower temperatures (300 °C), which was less prominent at higher temperatures (>330 °C). Kinetic model fitting results at lower temperatures (300–320 °C) indicated direct conversion of triglycerides to deoxygenated products along with oligomeric and cracked products formation with no internal conversions between the products indicated.

Graphical abstractIncreased conversion at lower temperatures and high space velocity for jatropha oil over Titanosilicates with 3D-wormhole-like mesoporosity, for higher yield of desired range C15–C18 hydrocarbons.Figure optionsDownload full-size imageDownload high-quality image (140 K)Download as PowerPoint slideHighlights► Sulfided Ni-Mo and Co-Mo on mesoporous titanosilicates for triglyceride deoxygenation. ► Higher yield of hydrocarbons and improved isomerization than γ-alumina support. ► Kinetic pathways indicating direct formation of products with no internal conversions.

Keywords
Biofuels; Hydrotreating; Mesoporous Titanosilicate; Kinetic pathways
First Page Preview
Jatropha-oil conversion to liquid hydrocarbon fuels using mesoporous titanosilicate supported sulfide catalysts
Publisher
Database: Elsevier - ScienceDirect
Journal: Catalysis Today - Volume 198, Issue 1, 30 December 2012, Pages 314–320
Authors
, , , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Catalysis