fulltext.study @t Gmail

The formation of an organic coat and the release of corrosion microparticles from metallic magnesium implants

Paper ID Volume ID Publish Year Pages File Format Full-Text
554 46 2013 10 PDF Available
Title
The formation of an organic coat and the release of corrosion microparticles from metallic magnesium implants
Abstract

Magnesium alloys have been proposed as prospective degradable implant materials. To elucidate the complex interactions between the corroding implants and the tissue, magnesium implants were analyzed in a mouse model and the response was compared to that induced by Ti and by the resorbable polymer polyglactin, respectively. One month after implantation, distinct traces of corrosion were apparent but the magnesium implants were still intact, whereas resorbable polymeric wound suture implants were already fragmented. Analysis of magnesium implants 2 weeks after implantation by energy-dispersive X-ray spectroscopy indicated that magnesium, oxygen, calcium and phosphate were present at the implant surface. One month after implantation, the element composition of the outermost layer of the implant was indicative of tissue without detectable levels of magnesium, indicating a protective barrier function of this organic layer. In agreement with this notion, gene expression patterns in the surrounding tissue were highly similar for all implant materials investigated. However, high-resolution imaging using energy-filtered transmission electron microscopy revealed magnesium-containing microparticles in the tissue in the proximity of the implant. The release of such corrosion particles may contribute to the accumulation of calcium phosphate in the nearby tissue and to bone conductive activities of magnesium implants.

Keywords
Animal model; Biocompatibility; Biodegradation; In vivo test; Magnesium
First Page Preview
The formation of an organic coat and the release of corrosion microparticles from metallic magnesium implants
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Acta Biomaterialia - Volume 9, Issue 7, July 2013, Pages 7580–7589
Authors
, , , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us