fulltext.study @t Gmail

Structure sensitivity of the low-temperature water-gas shift reaction on Cu–CeO2 catalysts

Paper ID Volume ID Publish Year Pages File Format Full-Text
55590 47058 2012 13 PDF Available
Title
Structure sensitivity of the low-temperature water-gas shift reaction on Cu–CeO2 catalysts
Abstract

We have investigated the structure sensitivity of the water-gas shift (WGS) reaction on Cu–CeO2 catalysts prepared at the nanoscale by different techniques. On the surface of ceria, different CuOx structures exist. We show here that only the strongly bound Cu–[Ox]–Ce species, probably associated with the surface oxygen vacancies of ceria, are active for catalyzing the low-temperature WGS reaction. Weakly bound CuOx clusters and CuO nanoparticles are spectator species in the reaction. Isolated Cu2+ ions doping the ceria surface are not active themselves, but they are important in that they create oxygen vacancies and can be used as a reservoir of copper to replenish surface Cu removed by leaching or sintering. Accordingly, synthesis techniques such as coprecipitation that allow for extensive solubility of Cu in ceria should be preferred over impregnation, deposition–precipitation, ion exchange or another two-step method whereby the copper precursor is added to already made ceria nanocrystals. For the synthesis of different structures, we have used two methods: a homogeneous coprecipitation (CP), involving hexamethylenetetramine as the precipitating agent and the pH buffer; and a deposition–precipitation (DP) technique. In the latter case, the ceria supports were first synthesized at the nanoscale with different shapes (rods, cubes) to investigate any potential shape effect on the reaction. Cu–CeO2 catalysts with different copper contents up to ca. 20 at.% were prepared. An indirect shape effect of CeO2, manifested by the propensity to form oxygen vacancies and strongly bind copper in the active form, was established; i.e. the water-gas shift reaction is not structure-sensitive. The apparent activation energy of the reaction on all samples was similar, 50 ± 10 kJ/mol, in a product-free (2% CO–10% H2O) gas mixture.

Graphical abstractFigure optionsDownload full-size imageDownload high-quality image (122 K)Download as PowerPoint slideHighlights► Two preparation methods; a coprecipitation and a deposition–precipitation, were found to produce similar species on the surfaces of Cu–CeO2, albeit in different amounts. ► Strongly bound Cu–[Ox]–Ce species are the only active sites for the low-temperature WGS reaction. ► Weakly bound CuOx clusters and CuO nanoparticles are spectator species. ► Cu2+ ions doping the ceria lattice create oxygen vacancies and serve as a reservoir of active sites for the WGS reaction. ► An indirect shape effect of CeO2 was established, i.e. the catalyst activity scales with the number of Cu–[Ox]–Ce sites on all the ceria surfaces.

Keywords
Water-gas shift; Copper; Cerium oxide; Copper–ceria; Structure sensitivity; Shape effect
First Page Preview
Structure sensitivity of the low-temperature water-gas shift reaction on Cu–CeO2 catalysts
Publisher
Database: Elsevier - ScienceDirect
Journal: Catalysis Today - Volume 180, Issue 1, 17 January 2012, Pages 68–80
Authors
, , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Catalysis