fulltext.study @t Gmail

In vitro degradation and cytotoxicity response of Mg–4% Zn–0.5% Zr (ZK40) alloy as a potential biodegradable material ☆

Paper ID Volume ID Publish Year Pages File Format Full-Text
566 51 2013 14 PDF Available
Title
In vitro degradation and cytotoxicity response of Mg–4% Zn–0.5% Zr (ZK40) alloy as a potential biodegradable material ☆
Abstract

Mg–4 wt.% Zn–0.5 wt.% Zr (ZK40) alloy was studied as a candidate material for biodegradable metallic implants in terms of its biocorrosion resistance, mechanical properties and cytocompatibility. The corrosion characteristics of ZK40 alloy were assessed by potentiodynamic polarization and immersion testing in DMEM + 10% FBS solution. Analysis of the degradation characteristics by potentiodynamic polarization measurements shows the corrosion rates of ZK40 alloy in as-cast and solution treatment (T4) condition were slightly higher than those of pure Mg or as-drawn AZ31. Determination of the corrosion rate by the weight loss technique reveals that the as-cast ZK40 resulted in slower degradation than other alloy specimens after 7 days of immersion but exhibited accelerated degradation after 14 and 21 days, respectively. T4-treated ZK40 exhibited stable degradation rates compared to as-cast ZK40 and close to those of pure Mg and AZ31 during immersion testing for 14 and 21 days. In order to examine the in vitro cytocompatibility of ZK40 alloy, live/dead cell viability assay and indirect MTT assay were performed using a murine osteoblast-like cell line (MC3T3). After 3 days of direct culture of MC3T3 on ZK40 alloys the live/dead assay indicated favorable cell viability and attachment. The degradation product of ZK40 also showed minimal cytotoxicity when assessed in indirect MTT assay. The mechanical properties of the as-cast and T4-treated ZK40 alloy were superior to those of pure Mg and comparable to as-drawn AZ31. Solution treatment did not significantly enhance the cytocompatibility and mechanical properties of ZK40 alloy. Overall, the ZK40 alloy exhibited favorable cytocompatibility, biocorrosion, and mechanical properties rendering it a potential candidate for degradable implant applications.

Keywords
Magnesium; Biodegradation; Mg-Zn-Zr; Mechanical properties; Cytocompatibility
First Page Preview
In vitro degradation and cytotoxicity response of Mg–4% Zn–0.5% Zr (ZK40) alloy as a potential biodegradable material ☆
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Acta Biomaterialia - Volume 9, Issue 10, November 2013, Pages 8534–8547
Authors
, , , , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us