fulltext.study @t Gmail

Doxorubicin-loaded polysaccharide nanoparticles suppress the growth of murine colorectal carcinoma and inhibit the metastasis of murine mammary carcinoma in rodent models

Paper ID Volume ID Publish Year Pages File Format Full-Text
5696 417 2015 12 PDF Available
Title
Doxorubicin-loaded polysaccharide nanoparticles suppress the growth of murine colorectal carcinoma and inhibit the metastasis of murine mammary carcinoma in rodent models
Abstract

As a synergistic drug combination, doxorubicin-loaded cisplatin crosslinked polysaccharide-based nanoparticles (Dex-SA-DOX-CDDP) have demonstrated enhanced antitumor efficacy and reduced systemic toxicity via optimized biodistribution, controlled drug release, prolonged blood circulation, and improved tolerability, compared to the non-crosslinked nanoparticles or free doxorubicin. Herein, we apply the Dex-SA-DOX-CDDP nanoparticles as an efficient antitumor agent to treat colorectal and breast tumors in three different in vivo models, i.e. subcutaneously implanted colorectal carcinoma, dimethylhydrazine-induced autochthonous colorectal carcinoma, and metastatic mammary carcinoma, which more closely simulate the natural milieu of the original tumor with intact pathological and immunological responses. Based on the properties of this combination in higher tumor accumulation and penetrating efficiency, the Dex-SA-DOX-CDDP nanoparticles significantly decreased the tumor sizes in CT26 cell line xenograft tumors compared to control. In addition, the affected animals' lifespan was significantly extended after the Dex-SA-DOX-CDDP treatment, in the autochthonous colon cancer model. Moreover, with the aid of iRGD, Dex-SA-DOX-CDDP could effectively block primary tumor growth and prevent the metastasis of 4T1 murine mammary carcinoma. In conclusion, Dex-SA-DOX-CDDP nanoparticles remarkably inhibit growth of colorectal carcinoma and metastasis of mammary carcinoma in vivo, which provides potential application as a safe and efficient antitumor agent in treatment of these cancers.

Keywords
Cancer model; Colorectal carcinoma; Mammary carcinoma; Metastasis; Doxorubicin; Chemotherapy
First Page Preview
Doxorubicin-loaded polysaccharide nanoparticles suppress the growth of murine colorectal carcinoma and inhibit the metastasis of murine mammary carcinoma in rodent models
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 51, May 2015, Pages 161–172
Authors
, , , , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us