fulltext.study @t Gmail

Site-specific in situ growth of a cyclized protein-polymer conjugate with improved stability and tumor retention

Paper ID Volume ID Publish Year Pages File Format Full-Text
5734 423 2015 7 PDF Available
Title
Site-specific in situ growth of a cyclized protein-polymer conjugate with improved stability and tumor retention
Abstract

A major disadvantage of therapeutic proteins is their instability to external stressors during storage, transport and use. Here, we report site-specific in situ growth of a cyclized protein-polymer conjugate with improved in vitro and in vivo stability. Green fluorescence protein (GFP) was genetically fused at its N- and C-termini with two sortase recognition sequences pentaglycine and LPETG, respectively to yield a linear GFP (l-GFP). A cyclized GFP (c-GFP) was generated from the l-GFP by sortase-catalyzed cyclization. A maleimide-functionalized atom transfer radical polymerization (ATRP) initiator was selectively attached to a free cysteine residue genetically engineered at the C-terminus of GFP to form a macroinitiator (c-GFP-Br). Subsequent in situ ATRP of oligo(ethylene glycol) methyl ether methacrylate (OEGMA) from the c-GFP-Br generated a site-specific (C-terminal) and stoichiometric (1:1) c-GFP-POEGMA conjugate with almost quantitative conversion and highly retained activity. Notably, the c-GFP-POEGMA conjugate showed 9- and 310-fold increases in thermal stability as compared to the l-GFP and its counterpart l-GFP-POEGMA, respectively. Additionally, the conjugate displayed significantly improved tumor retention relative to the l-GFP and l-GFP-POEGMA. The method developed may be applicable to a variety of therapeutic proteins to improve their in vitro and in vivo stability.

Keywords
Protein-polymer conjugate; Protein engineering; Protein delivery; Atom transfer radical polymerization
First Page Preview
Site-specific in situ growth of a cyclized protein-polymer conjugate with improved stability and tumor retention
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 47, April 2015, Pages 13–19
Authors
, , , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us