fulltext.study @t Gmail

TPGS-stabilized NaYbF4:Er upconversion nanoparticles for dual-modal fluorescent/CT imaging and anticancer drug delivery to overcome multi-drug resistance

Paper ID Volume ID Publish Year Pages File Format Full-Text
5762 426 2015 10 PDF Available
Title
TPGS-stabilized NaYbF4:Er upconversion nanoparticles for dual-modal fluorescent/CT imaging and anticancer drug delivery to overcome multi-drug resistance
Abstract

Multi-drug resistance (MDR) is a major cause of failure in cancer chemotherapy. Tocopheryl polyethylene glycol 1000 succinate (TPGS) has been extensively investigated for overcoming MDR in cancer therapy because of its ability to inhibit P-glycoprotein (P-gp). In this work, TPGS was for the first time used as a new surface modifier to functionalize NaYbF4:Er upconversion nanoparticles (UNCPs) and endowed the as-prepared products (TPGS-UCNPs) with excellent water-solubility, P-gp inhibition capability and imaging-guided drug delivery property. After the chemotherapeutic drug (doxorubicin, DOX) loading, the as-formed composites (TPGS-UCNPs-DOX) exhibited potent killing ability for DOX-resistant MCF-7 cells. Flow-cytometric assessment and Western blot assay showed that the TPGS-UCNPs could potently decrease the P-gp expression and facilitate the intracellular drug accumulation, thus achieving MDR reversal. Moreover, considering that UCNPs process efficient upconversion emission and Yb element contained in UCNPs has strong X-ray attenuation ability, the as-obtained composite could also serve as a dual-modal probe for upconversion luminescence (UCL) imaging and X-ray computed tomography (CT) imaging, making them promising for imaging-guided cancer therapy.

Keywords
TPGS; Upconversion nanoparticles; P-gp inhibition; Multi-drug resistance; Theranostics
First Page Preview
TPGS-stabilized NaYbF4:Er upconversion nanoparticles for dual-modal fluorescent/CT imaging and anticancer drug delivery to overcome multi-drug resistance
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 40, February 2015, Pages 107–116
Authors
, , , , , , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us