fulltext.study @t Gmail

A shape-controlled tuneable microgel platform to modulate angiogenic paracrine responses in stem cells

Paper ID Volume ID Publish Year Pages File Format Full-Text
5772 430 2014 10 PDF Available
Title
A shape-controlled tuneable microgel platform to modulate angiogenic paracrine responses in stem cells
Abstract

Development of cell delivery platforms have been driven based on an empirical cytoprotective design. While cell-matrix and cell–cell interactions that influence biochemical effects beyond survival has been limited and overshadowed in an effort to incrementally improve biomimicking properties of the tissue-engineered constructs. Here we demonstrate fabrication of a shape controlled 3D type-I collagen-based microgel platform that can be tuned to modulate angiogenic paracrine- ‘angiocrine’ responses of human mesenchymal stem cells (hMSCs). Furthermore, these microgels were characterized as a 3D cell culture tool to assess optimal biological response as a function of cell-matrix and cell–cell interactions. Finally, optimised hMSC embedded microgels were shown to induce vascular repair and functional improvement in vivo in a mouse model of hind-limb ischemia. The approach described here in designing a tuneable cell delivery platform using naturally occurring extracellular matrix molecules highlights the need for highly customised matrices with an array of self-assembling proteins that dictate specific cell function resembling the native tissue of interest for repair.

Keywords
Customised ECM matrices; Microgels; Mesenchymal stem cells; Cell-factories; Angiogenesis
First Page Preview
A shape-controlled tuneable microgel platform to modulate angiogenic paracrine responses in stem cells
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 35, Issue 31, October 2014, Pages 8757–8766
Authors
, , , , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us