fulltext.study @t Gmail

Ultrashort peptide nanofibrous hydrogels for the acceleration of healing of burn wounds

Paper ID Volume ID Publish Year Pages File Format Full-Text
5829 438 2014 10 PDF Available
Title
Ultrashort peptide nanofibrous hydrogels for the acceleration of healing of burn wounds
Abstract

There is an unmet clinical need for wound dressings to treat partial thickness burns that damage the epidermis and dermis. An ideal dressing needs to prevent infection, maintain skin hydration to facilitate debridement of the necrotic tissue, and provide cues to enhance tissue regeneration. We developed a class of ‘smart’ peptide hydrogels, which fulfill these criteria. Our ultrashort aliphatic peptides have an innate tendency to self-assemble into helical fibers, forming biomimetic hydrogel scaffolds which are non-immunogenic and non-cytotoxic. These nanofibrous hydrogels accelerated wound closure in a rat model for partial thickness burns. Two peptide hydrogel candidates demonstrate earlier onset and completion of autolytic debridement, compared to Mepitel®, a silicone-coated polyamide net used as standard-of-care. They also promote epithelial and dermal regeneration in the absence of exogenous growth factors, achieving 86.2% and 92.9% wound closure respectively, after 14 days. In comparison, only 62.8% of the burnt area is healed for wounds dressed with Mepitel®. Since the rate of wound closure is inversely correlated with hypertrophic scar formation and infection risks, our peptide hydrogel technology fills a niche neglected by current treatment options. The regenerative properties can be further enhanced by incorporation of bioactive moieties such as growth factors and cytokines.

Keywords
Ultrashort peptide hydrogels; Nanofibers; Self-assembly; Partial thickness burns; Wound healing
First Page Preview
Ultrashort peptide nanofibrous hydrogels for the acceleration of healing of burn wounds
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 35, Issue 17, June 2014, Pages 4805–4814
Authors
, , , , , , , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us