fulltext.study @t Gmail

Crosslink density, oxidation and chain scission in retrieved, highly cross-linked UHMWPE tibial bearings

Paper ID Volume ID Publish Year Pages File Format Full-Text
5837 441 2014 5 PDF Available
Title
Crosslink density, oxidation and chain scission in retrieved, highly cross-linked UHMWPE tibial bearings
Abstract

Irradiated, thermally stabilized, highly cross-linked UHMWPE bearings have demonstrated superior wear performance and improved in vitro oxidation resistance compared with terminally gamma-sterilized bearings, yet retrieval analysis reveals unanticipated in vivo oxidation in these materials despite fewer or no measurable free radicals. There has been little evidence to date that the oxidation mechanism in thermally stabilized materials is the same as that in conventional materials, and so it is unknown whether oxidation in these materials is leading to chain scission and a degradation of mechanical properties, molecular weight, and crosslink density. The aim of this study was to determine whether measured in vivo oxidation in retrieved, highly cross-linked tibial bearings corresponds with a decreasing crosslink density. Analysis of three tibial bearing materials revealed that crosslink density decreased following in vivo duration, and that the change in crosslink density was strongly correlated with oxidation. The results suggest that oxidation in highly cross-linked materials is causing chain scissions that may, in time, impact the material properties. If in vivo oxidation continues over longer durations, there is potential for a clinically significant degradation of mechanical properties.

Keywords
Polyethylene; Oxidation; Cross-linking; FTIR; Arthroplasty; Knee replacement
First Page Preview
Crosslink density, oxidation and chain scission in retrieved, highly cross-linked UHMWPE tibial bearings
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 35, Issue 15, May 2014, Pages 4436–4440
Authors
, , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us