fulltext.study @t Gmail

Highly elastomeric poly(glycerol sebacate)-co-poly(ethylene glycol) amphiphilic block copolymers

Paper ID Volume ID Publish Year Pages File Format Full-Text
6149 466 2013 14 PDF Available
Title
Highly elastomeric poly(glycerol sebacate)-co-poly(ethylene glycol) amphiphilic block copolymers
Abstract

Poly(glycerol sebacate) (PGS), a tough elastomer, has been proposed for tissue engineering applications due to its desired mechanical properties, biocompatibility and controlled degradation. Despite interesting physical and chemical properties, PGS shows limited water uptake capacity (∼2%), thus constraining its utility for soft tissue engineering. Therefore, a modification of PGS that would mimic the water uptake and water retention characteristics of natural extracellular matrix is beneficial for enhancing its utility for biomedical applications. Here, we report the synthesis and characterization of highly elastomeric poly(glycerol sebacate)-co-polyethylene glycol (PGS-co-PEG) block copolymers with controlled water uptake characteristics. By tailoring the water uptake property, it is possible to engineer scaffolds with customized degradation and mechanical properties. The addition of PEG results in almost 15-fold increase in water uptake capacity of PGS, and improves its mechanical stability under dynamic loading conditions. PGS-co-PEG polymers show elastomeric properties and can be subjected to serve deformation such as bending and stretching. The Young's modulus of PGS-co-PEG can be tuned from 13 kPa to 2.2 MPa by altering the amount of PEG within the copolymer network. Compared to PGS, more than six-fold increase in elongation was observed upon PEG incorporation. In addition, the rate of degradation increases with an increase in PEG concentration, indicating that degradation rate of PGS can be regulated. PGS-co-PEG polymers also support cell proliferation, and thus can be used for a range of tissue engineering applications.

Keywords
Block copolymers; Elastomer; Mechanical properties; Poly(glycerol sebacate); Poly(ethylene glycol)
First Page Preview
Highly elastomeric poly(glycerol sebacate)-co-poly(ethylene glycol) amphiphilic block copolymers
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 34, Issue 16, May 2013, Pages 3970–3983
Authors
, , , , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us