fulltext.study @t Gmail

Gadolinium complex and phosphorescent probe-modified NaDyF4 nanorods for T1- and T2-weighted MRI/CT/phosphorescence multimodality imaging

Paper ID Volume ID Publish Year Pages File Format Full-Text
6226 468 2014 10 PDF Available
Title
Gadolinium complex and phosphorescent probe-modified NaDyF4 nanorods for T1- and T2-weighted MRI/CT/phosphorescence multimodality imaging
Abstract

To compensate for the deficiencies of individual imaging modalities, lanthanide-based nanoparticles are ideal building blocks for multifunctional contrast agents. Herein, oleic acid-coated NaDyF4 nanorods (DyNPs) were synthesized by the hydrothermal method, and then coated with α-cyclodextrin (α-CD) and modified with gadolinium complex (Gd-DTPA) to obtain hydrophilic and functionalized nanoparticles (DyNPs-Gd). By loading the phosphorescent probe (iridium-complex) within the surface hydrophobic layer, the developed nanophosphors (DyNPs-Gd-Ir) could be further applied in phosphorescent cell labeling. The Dy in the host induces a high X-ray absorption ability for X-ray computed tomography (CT) and negative enhancement for T2-weighted magnetic resonance imaging (MRI), whereas positive contrast for T1-weighted MRI results from the Gd-DTPA. DyNPs-Gd-Ir has been successfully applied to T1- and T2-weighted MRI/CT in vivo. Toxicity studies demonstrated that DyNPs-Gd-Ir exhibited low toxicity to living systems. Therefore, DyNPs-Gd-Ir could be a platform for next-generation contrast agents for T1- and T2-weighted MRI/CT/phosphorescence multimodal imaging.

Keywords
NaDyF4; Nanorods; T1 and T2-weighted; MRI; CT; Phosphorescence imaging
First Page Preview
Gadolinium complex and phosphorescent probe-modified NaDyF4 nanorods for T1- and T2-weighted MRI/CT/phosphorescence multimodality imaging
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 35, Issue 1, January 2014, Pages 368–377
Authors
, , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us