fulltext.study @t Gmail

Water-dispersible magnetic carbon nanotubes as T2-weighted MRI contrast agents

Paper ID Volume ID Publish Year Pages File Format Full-Text
6227 468 2014 9 PDF Available
Title
Water-dispersible magnetic carbon nanotubes as T2-weighted MRI contrast agents
Abstract

An efficient MRI T2-weighted contrast agent incorporating a potential liver targeting functionality was synthesized via the combination of superparamagnetic iron oxide (SPIO) nanoparticles with multiwalled carbon nanotubes (MWCNTs). Poly(diallyldimethylammonium chloride) (PDDA) was coated on the surface of acid treated MWCNTs via electrostatic interactions and SPIO nanoparticles modified with a potential targeting agent, lactose–glycine adduct (Lac–Gly), were subsequently immobilized on the surface of the PDDA–MWCNTs. A narrow magnetic hysteresis loop indicated that the product displayed superparamagnetism at room temperature which was further confirmed by ZFC (zero field cooling)/FC (field cooling) curves measured by SQUID. The multifunctional MWCNT-based magnetic nanocomposites showed low cytotoxicity in vitro to HEK293 and Huh7 cell lines. Enhanced T2 relaxivities were observed for the hybrid material (186 mm−1 s−1) in comparison with the pure magnetic nanoparticles (92 mm−1 s−1) due to the capacity of the MWCNTs to “carry” more nanoparticles as clusters. More importantly, after administration of the composite material to an in vivo liver cancer model in mice, a significant increase in tumor to liver contrast ratio (277%) was observed in T2 weighted magnetic resonance images.

Keywords
Surface modification; Nanoparticle; MRI (magnetic resonance imaging); In vitro test; In vivo test; Magnetism
First Page Preview
Water-dispersible magnetic carbon nanotubes as T2-weighted MRI contrast agents
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 35, Issue 1, January 2014, Pages 378–386
Authors
, , , , , , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us