fulltext.study @t Gmail

Biodistribution of sub-10 nm PEG-modified radioactive/upconversion nanoparticles

Paper ID Volume ID Publish Year Pages File Format Full-Text
6335 484 2013 8 PDF Available
Title
Biodistribution of sub-10 nm PEG-modified radioactive/upconversion nanoparticles
Abstract

The biodistribution of lanthanide-based upconversion nanophosphors (UCNPs) has attracted increasing attention, and all of the reported UCNPs display metabolism in the liver and spleen mainly. Herein, ∼8 nm poly(ethylene glycol) (PEG)-coated NaYF4 nanoparticles codoped with Yb3+, Er3+, and (or) radioactive 153Sm3+ ions were synthesized, through a hydrothermal synthetic system assisted by binary cooperative ligands with oleic acid and PEG dicarboxylic acids. The as-prepared PEG-coating NaYF4:Yb,Er and NaYF4:Yb,Er,153Sm are denoted as PEG-UCNPs and PEG-UCNPs(153Sm), respectively. PEG-UCNPs were characterized by transmission electron microscope (TEM), X-ray diffraction (XRD) analysis, and Fourier-transform infrared (FTIR) spectroscopy. The PEG-UCNPs showed excellent water solubility with a hydrodynamic diameter of ∼10 nm and displayed upconversion luminescence (UCL) under continuous-wave excitation at 980 nm. At the same time, the 153Sm-doped nanoparticles PEG-UCNPs(153Sm) displayed radioactivity, and time-dependent biodistribution of PEG-UCNPs(153Sm) was investigated, through single-photon emission computed tomography (SPECT) imaging and γ-counter analysis. Interestingly, PEG-UCNPs(153Sm) had a long blood retention time and were partly eliminated through urinary pathways in vivo. Therefore, the concept of fabricating PEG-coated, small nanosize (sub-10 nm) nanoparticles with radioactive property is a useful strategy for providing a potential method to monitor lanthanide nanoparticles renal clearable.

Keywords
Upconversion luminescence; Lanthanide nanoparticles; Biodistribution; Samarium-153; SPECT imaging
First Page Preview
Biodistribution of sub-10 nm PEG-modified radioactive/upconversion nanoparticles
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 34, Issue 29, September 2013, Pages 7127–7134
Authors
, , , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering