fulltext.study @t Gmail

The effect of elastomer chain flexibility on protein adsorption

Paper ID Volume ID Publish Year Pages File Format Full-Text
6439 491 2013 8 PDF Available
Title
The effect of elastomer chain flexibility on protein adsorption
Abstract

Cells are known to respond differently when grown on materials of varying stiffness. However, the mechanism by which a cell senses substrate stiffness is unknown. Lower crosslink density elastomers formed from acrylated star-poly(d,l lactide-co-ϵ-caprolactone) have previously been shown to support higher smooth muscle cell proliferation in in vitro culture. This difference in growth was hypothesized to be due to differences in protein adsorption that resulted from differences in polymer chain mobility at the surface. Therefore, layer mass and viscoelastic properties were measured for HSA, IgG, fibronectin, vitronectin, and serum supplemented media adsorbed to elastomers of two crosslink densities. Significantly more fibronectin adsorbed to the lower crosslink density surface while significantly more IgG adsorbed to the higher crosslink density surface. Furthermore, differences in fibronectin and IgG layer shear moduli were observed, suggesting that there was a difference in the conformation of the adsorbed protein. ATR-FTIR analysis showed that the lower crosslink density elastomer absorbed more surface water. The increased amount of water may cause greater entropic gains upon protein adsorption to the lower crosslink density surface, which increases total protein adsorption from serum and may cause differences in protein conformation and thus cell behavior.

Keywords
Protein adsorption; Polymer chain mobility; Crosslink density; Elastomer; Cell adhesion
First Page Preview
The effect of elastomer chain flexibility on protein adsorption
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 34, Issue 37, December 2013, Pages 9287–9294
Authors
, , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us