fulltext.study @t Gmail

In vivo inhibition of hypertrophic scars by implantable ginsenoside-Rg3-loaded electrospun fibrous membranes

Paper ID Volume ID Publish Year Pages File Format Full-Text
649 53 2013 13 PDF Available
Title
In vivo inhibition of hypertrophic scars by implantable ginsenoside-Rg3-loaded electrospun fibrous membranes
Abstract

Clinically, hypertrophic scarring (HS) is a major concern for patients and has been a challenge for surgeons, as there is a lack of treatments that can intervene early in the formation of HS. This study reports on a Chinese drug, 20(R)-ginsenoside Rg3 (GS-Rg3), which can inhibit in vivo the early formation of HS and later HS hyperplasia by inducing the apoptosis of fibroblasts, inhibiting inflammation and down-regulating VEGF expression. Implantable biodegradable GS-Rg3-loaded poly(l-lactide) (PLA) fibrous membranes were successfully fabricated using co-electrospinning technology to control drug release and improve drug utilization. The in vivo releasing time of GS-Rg3 lasts for 3 months, and the drug concentration released in rabbits can be controlled by varying the drug content of the electrospun fibers. Histological observations of HE staining indicate that GS-Rg3/PLA significantly inhibits the HS formation, with obvious improvements in terms of dermis layer thickness, epidermis layer thickness and fibroblast proliferation. The results of immunohistochemistry staining and Masson’s trichrome staining demonstrate that GS-Rg3/PLA electrospun fibrous membranes significantly inhibit HS formation, with decreased expression of collagen fibers and microvessels. VEGF protein levels are much lower in the group treated with GS-Rg3/PLA eletrospun membranes compared with other groups. These results demonstrate that GS-Rg3 is a novel drug, capable of inhibiting the early formation of HS and later HS hyperplasia. GS-Rg3/PLA electrospun membrane is a very promising new treatment for early and long-term treatment of HS.

Graphical abstractFigure optionsDownload full-size imageDownload high-quality image (297 K)Download as PowerPoint slide

Keywords
Ginsenoside Rg3; Electrospinning; Hypertrophic scars; Controlled release; Implantable
First Page Preview
In vivo inhibition of hypertrophic scars by implantable ginsenoside-Rg3-loaded electrospun fibrous membranes
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Acta Biomaterialia - Volume 9, Issue 12, December 2013, Pages 9461–9473
Authors
, , , , , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us