fulltext.study @t Gmail

Impact of the nature, size and chain topologies of carbohydrate–phosphorylcholine polymeric gene delivery systems

Paper ID Volume ID Publish Year Pages File Format Full-Text
6504 492 2012 13 PDF Available
Title
Impact of the nature, size and chain topologies of carbohydrate–phosphorylcholine polymeric gene delivery systems
Abstract

With the recent significant advances in the field polymer chemistry, it is now possible to produce well-defined and non-toxic cationic polymers with advanced molecular structures of desired molecular weights and compositions. Carefully engineered polymer architectures are found to impact significantly their DNA condensation and gene delivery efficacies. In a previous study, the statistical carbohydrates based copolymers were found to show high gene expression and low toxicity, however there aggregation in the presence of serum proteins was a major drawback. In this study, carbohydrate and phosphorylcholine based cationic polymers having a different architecture, compositions and varying molecular weights are produced and are termed as cationic ‘block-statistical’ copolymers. These cationic copolymers are evaluated for their gene delivery efficacies, interactions with serum protein, cellular uptake and nuclear localization ability. As compared to the statistical analogue, ‘block-statistical’ copolymers showed high gene expression, low interactions with serum proteins, as well as low toxicity in hepatocytes and human dermal fibroblasts. In addition, 2- methacryloyloxyethyl phosphorylcholine (MPC) based ‘block-statistical’ copolymers and their sugar incorporated analogues were prepared and were found to serve as improved gene delivery vectors than their statistical analogues.

Keywords
Block-statistical copolymers; Gene delivery; Cellular uptake; Nuclear localization; Progenitor cells
First Page Preview
Impact of the nature, size and chain topologies of carbohydrate–phosphorylcholine polymeric gene delivery systems
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 33, Issue 31, November 2012, Pages 7858–7870
Authors
, , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us