fulltext.study @t Gmail

Tendon healing and anti-adhesion properties of electrospun fibrous membranes containing bFGF loaded nanoparticles

Paper ID Volume ID Publish Year Pages File Format Full-Text
6636 508 2013 12 PDF Available
Title
Tendon healing and anti-adhesion properties of electrospun fibrous membranes containing bFGF loaded nanoparticles
Abstract

The ideal scaffolds should contain growth factors and thus can regulate cellular behaviors and tissue assembly. Electrospun fibrous membranes are widely-used scaffolds but growth factors are highly susceptible to losing their bioactivity during the electrospinning process. In this study, pre-formulated dextran glassy nanoparticles (DGNs) loaded with basic fibroblast growth factor (bFGF) were electrospun into a poly-l-lactic acid (PLLA) copolymer fiber to secure the bioactivity of bFGF in a sustained manner and then bioactivity retention was certificated by promoting cell proliferation and tendon healing. Meanwhile, the barrier effect of electrospun membrane was evaluated for clinic concern. In the in vitro release study, the protein encapsulation efficiency of the bFGF/DGNs-PLLA membrane reached 48.71 ± 13.53%, with a release kinetic of nearly 30 days. The enhanced cell proliferation and intrinsic tendon healing show that the bFGF/DGNs-loaded PLLA fibrous membrane can release bFGF sustainably and secure the bioactivity of bFGF better than the emulsion electrospun bFGF-loaded PLLA and PLLA fibrous membranes. Meanwhile, the anti-adhesion effect of electrospun membrane as barrier was fortunately combined as clinic concern.

Keywords
Protein delivery; Polysaccharide microparticles; Electrospun fiber; Tendon healing; Adhesion prevention
First Page Preview
Tendon healing and anti-adhesion properties of electrospun fibrous membranes containing bFGF loaded nanoparticles
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 34, Issue 19, June 2013, Pages 4690–4701
Authors
, , , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us