fulltext.study @t Gmail

The alignment of MC3T3-E1 osteoblasts on steps of slip traces introduced by dislocation motion

Paper ID Volume ID Publish Year Pages File Format Full-Text
6639 510 2012 9 PDF Available
Title
The alignment of MC3T3-E1 osteoblasts on steps of slip traces introduced by dislocation motion
Abstract

Bone tissue shows a highly anisotropic microstructure comprising biological apatite and collagen fibrils produced by the mutual activities of bone cells, which dominates its mechanical function. Accordingly, directional control of osteoblasts is crucial for forming anisotropic bone tissue. A new approach was proposed for controlling cell directionality by using crystallographic slip traces caused by dislocation glide. Dislocations were introduced into α-titanium single crystals by plastic deformation of (011¯0)[21¯1¯0] slip system, inducing a step-like structure with acute angles between the surface normal and the slip plane. Topographical properties of step patterning, including step interval and step height, could be controlled by varying the compressive plastic strain. The step geometry introduced by plastic deformation strongly influenced osteoblast elongation, and it aligned preferentially along slip traces. Ti substrates under 10% plastic strain with step height of approximately 300 nm and step interval of 10 μm induced osteoblast alignment most successfully. Actin stress fibers elongated parallel to slip traces, with polarized vinculin accumulation between steps.

Keywords
Osteoblast; Titanium; Crystallography; Cell adhesion; Cell morphology
First Page Preview
The alignment of MC3T3-E1 osteoblasts on steps of slip traces introduced by dislocation motion
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 33, Issue 30, October 2012, Pages 7327–7335
Authors
, , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us