fulltext.study @t Gmail

Biofilm formation in Staphylococcus implant infections. A review of molecular mechanisms and implications for biofilm-resistant materials

Paper ID Volume ID Publish Year Pages File Format Full-Text
6697 513 2012 16 PDF Available
Title
Biofilm formation in Staphylococcus implant infections. A review of molecular mechanisms and implications for biofilm-resistant materials
Abstract

Implant infections in orthopaedics, as well as in many other medical fields, are chiefly caused by staphylococci. The ability of growing within a biofilm enhances the chances of staphylococci to protect themselves from host defences, antibiotic therapies, and biocides. Advances in scientific knowledge on structural molecules (exopolysaccharide, proteins, teichoic acids, and the most recently described extracellular DNA), on the synthesis and genetics of staphylococcal biofilms, and on the complex network of signal factors that intervene in their control are here presented, also reporting on the emerging strategies to disrupt or inhibit them. The attitude of polymorphonuclear neutrophils and macrophages to infiltrate and phagocytise biofilms, as well as the ambiguous behaviour exhibited by these innate immune cells in biofilm-related implant infections, are here discussed. Research on anti-biofilm biomaterials is focused, reviewing materials loaded with antibacterial substances, or coated with anti-adhesive/anti-bacterial immobilized agents, or surfaced with nanostructures. Latter approaches appear promising, since they avoid the spread of antibacterial substances in the neighbouring tissues with the consequent risk of inducing bacterial resistance.

Keywords
Implant infections; Biofilm; Staphylococcus; Immune response; Osteolysis; Antibacterial biomaterials
First Page Preview
Biofilm formation in Staphylococcus implant infections. A review of molecular mechanisms and implications for biofilm-resistant materials
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 33, Issue 26, September 2012, Pages 5967–5982
Authors
, , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us