fulltext.study @t Gmail

A membrane vesicle-based dual vaccine against melanoma and Lewis lung carcinoma

Paper ID Volume ID Publish Year Pages File Format Full-Text
6714 513 2012 8 PDF Available
Title
A membrane vesicle-based dual vaccine against melanoma and Lewis lung carcinoma
Abstract

In the past few years, cell-derived membrane vesicle-based tumor vaccines have been considered as valuable new tools for cancer immunotherapy. Despite promising results in cancer clinical trails, an improved method is urgently needed for high efficiency tumor vaccines for a broad spectrum of tumors. Here we developed a single membrane vesicle-based vaccine, which is active in repressing both melanoma (B16) and Lewis lung carcinoma (LLC) tumor growth. By using the intrinsic function of dendritic cells in the processing and presentation of antigens, we generated dendritic cell (DC)-derived membrane vesicles (DC-mv) bearing tumor antigens from both B16 and LLC cells. Vaccination with this DC-mv-based dual vaccine induced specific cytotoxic T lymphocytes (CTL)-dependent tumor rejection and suppressed the growth of both types of tumor xenografts in mice. In addition, induction of CTL by this vaccine resulted in cross-protection responses and consequently enabled significant enhanced anti-tumor effects, indicating the synergistic anti-tumor activity. Our study suggests that the DC-mv-based vaccine holds great potential as a highly effective, versatile, cell-free vaccine for inhibition of multiple types of tumor growth.

Keywords
Membrane vesicle; Anti-Tumor dual vaccine; Synergistic effect; Cancer immunotherapyDC, dendritic cell; Dex, dendritic cell-derived exosomes; DC-mv, dendritic cell-derived membrane vesicles; Tex, tumor-derived exosomes; CTL, cytotoxic T lymphocyte; TEM, tr
First Page Preview
A membrane vesicle-based dual vaccine against melanoma and Lewis lung carcinoma
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 33, Issue 26, September 2012, Pages 6147–6154
Authors
, , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us