fulltext.study @t Gmail

The isolation and in situ identification of MSCs residing in loose connective tissues using a niche-preserving organ culture system

Paper ID Volume ID Publish Year Pages File Format Full-Text
6782 517 2012 11 PDF Available
Title
The isolation and in situ identification of MSCs residing in loose connective tissues using a niche-preserving organ culture system
Abstract

Mesenchymal stem cells (MSCs) have been discovered in a multitude of organs, but their distribution and identity are still uncertain. Furthermore, loose connective tissue (LCT) is dispersed throughout virtually all organs, but its biological role in tissue homeostasis is unclear. Here, we describe a unique organ culture system to explore the omnipresence and in situ identity of MSCs among the LCTs. This culture system included the use of the fibrin hydrogel coupled with dynamic culture conditions, using native LCTs obtained from various organs as starting materials. This culture allowed MSC outgrowth into the hydrogel to be robustly supported, while maintaining the structural integrity of LCTs during in vitro culture. Subcultured outgrown cells fulfilled the minimal requirements for defining MSCs on the basis of clonogenicity, multipotency, and immunophenotypic characteristics. In vitro label-retaining assay demonstrated that the numbers of mobilized and proliferated cells in situ increased in the pericapillary region and expressed both MSCs and pericytes markers, indicating that the in situ identity of MSCs represents a certain population of pericapillary pericytes. Our results indicate that this culture system affords a unique strategy for both isolating MSCs and recapitulating their niche in LCTs.

Keywords
Loose connective tissues; Mesenchymal stem cells; Stem cell niche; Fibrin; Pericytes; Organ culture
First Page Preview
The isolation and in situ identification of MSCs residing in loose connective tissues using a niche-preserving organ culture system
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 33, Issue 18, June 2012, Pages 4469–4479
Authors
, , , , , , , , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us