fulltext.study @t Gmail

Influence of decellularized matrix derived from human mesenchymal stem cells on their proliferation, migration and multi-lineage differentiation potential

Paper ID Volume ID Publish Year Pages File Format Full-Text
6783 517 2012 10 PDF Available
Title
Influence of decellularized matrix derived from human mesenchymal stem cells on their proliferation, migration and multi-lineage differentiation potential
Abstract

Developing biomaterials to promote stem cell proliferation and differentiation is a critical requirement in tissue engineering and regeneration. Extracellular matrix (ECM) derived from mesenchymal stem cells (MSCs) has recently been shown to be able to maintain the differentiation potential of MSCs during culture expansion and to restore the activities of aging MSCs, suggesting that MSC ECM (MECM) may be a suitable culture substrate to enhance the bioactivity of biomaterial scaffolds for MSCs. This investigation aims to characterize the biological nature and specificity of the influence of the MECM on MSCs. Native ECM produced by human MSC in vitro was extracted in urea, and the residual pellet was further processed with pepsin digestion (denoted as U-MECM and HP-MECM, respectively). The MECM products were then coated as a substrate on standard tissue culture plastic, and the behavior of MSCs seeded on the coated surfaces was studied. Our results showed that U-MECM coating dramatically accelerated MSC proliferation, attachment, spread, migration and multi-lineage differentiation (i.e., osteogenesis and adipogenesis), compared to collagen type I and HP-MECM coating. Non-collagenous proteins are likely the bioactive components in U-MECM, as MSCs cultured on collagen type I and HP-MECM showed similar biological activities, and collagen type I appeared to be the major protein components remaining in HP-MECM based on SDS-PAGE. These findings support the biological utility of MECM in the formulation of biomaterial scaffolds to enhance MSC bioactivities, including proliferation, migration and multi-lineage differentiation, for tissue regeneration applications.

Keywords
Decellularized matrix; Adult stem cells; Cell migration; Differentiation; Cell–matrix interaction
First Page Preview
Influence of decellularized matrix derived from human mesenchymal stem cells on their proliferation, migration and multi-lineage differentiation potential
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 33, Issue 18, June 2012, Pages 4480–4489
Authors
, , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us