fulltext.study @t Gmail

The performance of decellularized adipose tissue microcarriers as an inductive substrate for human adipose-derived stem cells

Paper ID Volume ID Publish Year Pages File Format Full-Text
6784 517 2012 10 PDF Available
Title
The performance of decellularized adipose tissue microcarriers as an inductive substrate for human adipose-derived stem cells
Abstract

With the aim of developing a clinically-translatable cell expansion and delivery vehicle for adipose tissue engineering, the adipogenic differentiation of human adipose-derived stem cells (ASCs) was investigated on microcarriers fabricated from human decellularized adipose tissue (DAT). ASCs seeded on the DAT microcarriers and cultured in adipogenic differentiation medium within a low-shear spinner culture system demonstrated high levels of adipogenic differentiation, as measured by the expression of adipogenic genes, glycerol-3-phosphate dehydrogenase (GPDH) enzyme activity, and intracellular lipid accumulation. In contrast, gelatin microcarrier controls did not demonstrate significant adipogenesis, emphasizing the role of the native matrix in mediating ASC differentiation. Interestingly, ASCs cultured on the DAT microcarriers in proliferation medium expressed elevated levels of the adipogenic markers, suggesting that the DAT provided an adipo-inductive substrate for the human ASCs. In vivo testing of the DAT and gelatin microcarriers in a subcutaneous Wistar rat model confirmed injectability and demonstrated stable volume retention over 28 days. Under histological analysis, the DAT microcarriers demonstrated no evidence of immunogenicity or cytotoxicity, with the DAT supporting cellular infiltration and tissue remodeling. Pre-seeding the DAT microcarriers with allogenic rat ASCs enhanced cellularity and angiogenesis within the implant region.

Keywords
Adipose tissue engineering; Cell culture; Differentiation; ECM (extracellular matrix); Microcarrier; Stem cell
First Page Preview
The performance of decellularized adipose tissue microcarriers as an inductive substrate for human adipose-derived stem cells
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 33, Issue 18, June 2012, Pages 4490–4499
Authors
, , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us