fulltext.study @t Gmail

Regulation of the differentiation of mesenchymal stem cells in vitro and osteogenesis in vivo by microenvironmental modification of titanium alloy surfaces

Paper ID Volume ID Publish Year Pages File Format Full-Text
6827 520 2012 14 PDF Available
Title
Regulation of the differentiation of mesenchymal stem cells in vitro and osteogenesis in vivo by microenvironmental modification of titanium alloy surfaces
Abstract

To mimic the extracellular microenvironment of bone, a bioactive multilayered structure of gelatin/chitosan pair, containing bone morphogenetic protein 2(BMP2) and fibronectin (FN), was constructed onto Ti6Al4V surface via a layer-by-layer assembly technique. The successful fabrication of multilayered structure was confirmed by contact angle measurement, field emission scanning electron microscopy (FE-SEM) and confocal laser scanning microscopy (CLSM), respectively. Bioactive BMP2 released in a sustained manner along with the degradation of multilayered structure. MSCs grown onto the multilayer coated TC4 substrates displayed significantly higher (p < 0.01 or p < 0.05) production levels of alkaline phosphatase (ALP), mineralization and genes expressions of runt related transcription factor 2 (Runx2), osterix, osteocalcin (OC), osteopontin (OPN), ALP and collagen type Ⅰ(ColⅠ) compared to the controls after culture for 7 days and 21 days, respectively. More importantly, MicroCT analysis and histological observations demonstrated that the multilayer coated Ti6Al4V implants in vivo promoted the bone density and new bone formation around them after implantation for 4 weeks and 12 weeks, respectively. The results indicated that Ti6Al4V coated with biofunctional multilayers was beneficial for osteogenesis and integration of implant/bone. The study therefore presents an alternative to fabricate bio-functionalized Ti6Al4V-based implants for potential application in orthopedics field.

Keywords
Ti6Al4V alloy; BMP2; Layer-by-layer assembly technique; Extracellular microenvironment; Mesenchymal stem cells; Osteogenesis
First Page Preview
Regulation of the differentiation of mesenchymal stem cells in vitro and osteogenesis in vivo by microenvironmental modification of titanium alloy surfaces
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 33, Issue 13, May 2012, Pages 3515–3528
Authors
, , , , , , , , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us