fulltext.study @t Gmail

Role of direct estrogen receptor signaling in wear particle-induced osteolysis

Paper ID Volume ID Publish Year Pages File Format Full-Text
6841 522 2013 10 PDF Available
Title
Role of direct estrogen receptor signaling in wear particle-induced osteolysis
Abstract

Estrogen withdrawal following surgical ovariectomy was recently shown to mitigate particle-induced osteolysis in the murine calvarial model. Currently, we hypothesize that estrogen receptors (ERs) were involved in this paradoxical phenomenon. To test this hypothesis, we first evaluated polyethylene (PE) particle-induced osteolysis in the murine calvarial model, using wild type (WT) C57BL6J female mice, ERα deficient (ERαKO) mice, and WT mice either treated with 17β-estradiol (E2) or with the ER pan-antagonist ICI 182,780. According to micro-CT and histomorphometry, we showed that bone resorption was consistently altered in both ERαKO and ICI 182,780 treated mice as compared to WT and E2 groups. Then, we demonstrated that ER disruption consistently decreased both PE and polymethylmethacrylate (PMMA) particle-induced production of TNF-α by murine macrophages in vitro. Similar results were obtained following ER blockade using ICI 182,780 in RAW 264.7 and WT macrophages. ER disruption and pre treatment with ICI 182,780 resulted in a consistent down-regulation of particle-induced TNF-α mRNA expression relative to WT macrophages or untreated RAW cells. These results indicate that the response to wear particles involves estrogen receptors in female mice, as part of macrophage activation. Estrogen receptors may be considered as a future therapeutic target for particle-induced osteolysis.

Keywords
Osteolysis; Wear debris; Estrogen receptor; Macrophages; Polyethylene
First Page Preview
Role of direct estrogen receptor signaling in wear particle-induced osteolysis
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 34, Issue 3, January 2013, Pages 641–650
Authors
, , , , , , , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us