fulltext.study @t Gmail

Tissue regeneration in vivo within recombinant spidroin 1 scaffolds

Paper ID Volume ID Publish Year Pages File Format Full-Text
6873 523 2012 12 PDF Available
Title
Tissue regeneration in vivo within recombinant spidroin 1 scaffolds
Abstract

One of the major tasks of tissue engineering is to produce tissue grafts for the replacement or regeneration of damaged tissue, and natural and recombinant silk-based polymer scaffolds are promising candidates for such grafts. Here, we compared two porous scaffolds made from different silk proteins, fibroin of Bombyx mori and a recombinant analog of Nephila clavipes spidroin 1 known as rS1/9, and their biocompatibility and degradation behavior in vitro and in vivo. The vascularization and intergrowth of the connective tissue, which was penetrated with nerve fibers, at 8 weeks after subcutaneous implantation in Balb/c mice was more profound using the rS1/9 scaffolds. Implantation of both scaffolds into bone defects in Wistar rats accelerated repair compared to controls with no implanted scaffold at 4 weeks. Based on the number of macrophages and multinuclear giant cells in the subcutaneous area and the number of osteoclasts in the bone, regeneration was determined to be more effective after the rS1/9 scaffolds were implanted. Microscopic examination of the morphology of the matrices revealed differences in their internal microstructures. In contrast to fibroin-based scaffolds, the walls of the rS1/9 scaffolds were visibly thicker and contained specific micropores. We suggest that the porous inner structure of the rS1/9 scaffolds provided a better micro-environment for the regenerating tissue, which makes the matrices derived from the recombinant rS1/9 protein favorable candidates for future in vivo applications.

Keywords
Silk-based polymer scaffolds; Fibroin; Recombinant spidroin; Tissue engineering; In vivo regeneration
First Page Preview
Tissue regeneration in vivo within recombinant spidroin 1 scaffolds
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 33, Issue 15, May 2012, Pages 3887–3898
Authors
, , , , , , , , , , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us