fulltext.study @t Gmail

On the mechanism of poly(methacrylic acid –co– methyl methacrylate)-induced angiogenesis: Gene expression analysis of dTHP-1 cells

Paper ID Volume ID Publish Year Pages File Format Full-Text
7117 535 2011 11 PDF Available
Title
On the mechanism of poly(methacrylic acid –co– methyl methacrylate)-induced angiogenesis: Gene expression analysis of dTHP-1 cells
Abstract

Identifying the critical molecules associated with “biocompatibility” is a grand challenge. Poly(methacrylic acid -co- methyl methacrylate) (MAA) beads improve wound closure and wound vascularity in vivo, but the mechanism of this phenomenon is unknown. We used quantitative real-time PCR to identify the subtle changes in the expression of a small selection of molecules involved in wound healing and angiogenesis in a macrophage-like cell (dTHP-1) treated with the MAA beads (45 mol% methacrylic acid). MAA beads decreased the expression of osteopontin (OPN) compared to poly(methyl methacrylate) (PMMA) and untreated cells, and increased the expression of IL-1β, IL-6 and TNF-α over the 24–96 h of the experiment. Interestingly, molecules associated with angiogenesis, such as bFGF, CXCL12, HIF-1α, PDGF-B, TGF-β and VEGF, were not significantly affected by MAA beads over the course of the study. MAA beads also increased the gene expression of OPN in HUVEC compared to untreated cells, while PMMA beads did not. MAA beads modified the phenotype (gene expression) of dTHP-1 cells in a subtle yet distinct manner that was different than PMMA. It remains to connect the changes in OPN in dTHP-1 (and HUVEC) and other molecules to the enhanced vascularity seen in vivo with this polymer.

Keywords
Macrophage; Methacrylic acid; Osteopontin; Gene expression; Cytokines; Angiogenesis
First Page Preview
On the mechanism of poly(methacrylic acid –co– methyl methacrylate)-induced angiogenesis: Gene expression analysis of dTHP-1 cells
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 32, Issue 34, December 2011, Pages 8957–8967
Authors
, , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us