fulltext.study @t Gmail

Bioengineering embryonic stem cell microenvironments for exploring inhibitory effects on metastatic breast cancer cells

Paper ID Volume ID Publish Year Pages File Format Full-Text
7144 536 2011 10 PDF Available
Title
Bioengineering embryonic stem cell microenvironments for exploring inhibitory effects on metastatic breast cancer cells
Abstract

The recreation of an in vitro microenvironment to understand and manipulate the proliferation and migration of invasive breast cancer cells may allow one to put a halt to their metastasis capacity. Invasive cancer cells have been linked to embryonic stem (ES) cells as they possess certain similar characteristics and gene signatures. Embryonic microenvironments have the potential to reprogram cancer cells into a less invasive phenotype and help elucidate tumorigenesis and metastasis. In this study, we explored the feasibility of reconstructing embryonic microenvironments using mouse ES cells cultured in alginate hydrogel and investigated the interactions of ES cells and highly invasive breast cancer cells in 2D, 2&1/2D, and 3D cultures. Results showed that mouse ES cells inhibited the growth and tumor spheroid formation of breast cancer cells. The mouse ES cell microenvironment was further constructed and optimized in 3D alginate hydrogel microbeads, and co-cultured with breast cancer cells. Migration analysis displayed a significant reduction in the average velocity and trajectory of breast cancer cell locomotion compared to control, suggesting that bioengineered mouse ES cell microenvironments inhibited the proliferation and migration of breast cancer cells. This study may act as a platform to open up new options to understand and harness tumor cell plasticity and develop therapeutics for metastatic breast cancer.

Keywords
Stem cell; Breast cancer cell; Microenvironment; Co-culture; Alginate; Metastasis
First Page Preview
Bioengineering embryonic stem cell microenvironments for exploring inhibitory effects on metastatic breast cancer cells
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 32, Issue 17, June 2011, Pages 4130–4139
Authors
, , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us