fulltext.study @t Gmail

The effects of covalently immobilized hyaluronic acid substrates on the adhesion, expansion, and differentiation of embryonic stem cells for in vitro tissue engineering

Paper ID Volume ID Publish Year Pages File Format Full-Text
7232 542 2011 12 PDF Available
Title
The effects of covalently immobilized hyaluronic acid substrates on the adhesion, expansion, and differentiation of embryonic stem cells for in vitro tissue engineering
Abstract

We investigated the in vitro effects of the molecular weight (MW) of hyaluronic acid (HA) on the maintenance of the pluripotency and proliferation of murine embryonic stem (ES) cells. High (1000 kDa) or low (4–8 kDa) MW HA was derivatized using an ultraviolet-reactive compound, 4-azidoaniline, and the derivative was immobilized onto cell culture cover slips. Murine ES cells were cultured on these HA surfaces for 5 days. High-MW HA interacted with murine ES cells via CD44, whereas low-MW HA interacted with these cells mostly via CD168. ES cells grown on both high- and low-MW HA appeared undifferentiated after 3 days. However, more cells adhered, proliferated, and exhibited greater amounts of phospho-p42/44 mitogen-activated-protein-kinase on low- compared with high-MW HA. Expression of Oct-3/4 and phosphorylation of STAT3 were enhanced by ES cells on low-MW HA, not on high-MW HA. After release from HA, cells cultured on low-MW HA in the presence of differentiating medium showed enhanced expression of α-SMA or CD31 compared with cells cultured on high-MW HA. It was concluded that low-MW HA substrates were effective in maintaining murine ES cells in a viable and undifferentiated state, which favors their use in the propagation of ES cells for tissue engineering.

Keywords
Hyaluronic acid; Micropatterning; Tissue engineering; Embryonic stem cell; Pluripotency; Proliferation
First Page Preview
The effects of covalently immobilized hyaluronic acid substrates on the adhesion, expansion, and differentiation of embryonic stem cells for in vitro tissue engineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 32, Issue 33, November 2011, Pages 8404–8415
Authors
, , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us