fulltext.study @t Gmail

The inhibition of infection by wound pathogens on scaffold in tissue-forming process using N-acetyl cysteine

Paper ID Volume ID Publish Year Pages File Format Full-Text
7239 542 2011 12 PDF Available
Title
The inhibition of infection by wound pathogens on scaffold in tissue-forming process using N-acetyl cysteine
Abstract

Prevention of local infection from wound pathogens such as Staphylococci and Streptococci is crucial for tissue regeneration. N-acetyl cysteine (NAC), an anti-oxidant amino acid derivative, has anti-microbial potential against various species. This in vitro study evaluated whether NAC prevented bacterial infection of gingival fibroblasts and osteoblasts on a scaffold. N-acetyl cysteine delayed growth of Staphylococcus aureus and Streptococcus pyogenes cultured in brain heart infusion (BHI) broth for 12 h in an almost dose-dependent manner (2.5, 5.0 or 10.0 mm). The number of rat gingival fibroblasts on collagen scaffolds with bacterial co-incubation was less than 30% of that in cultures without bacterial co-incubation at day 7. However, pre-addition of NAC to the scaffold yielded a number comparable with that in culture without bacteria. Fibroblasts on the scaffold with bacterial co-incubation were small, rounded and filled with bacteria and reactive oxygen species. Pre-addition of NAC, however, resulted in fibroblasts similar to those observed in culture without bacterial co-incubation. N-acetyl cysteine completely prevented devastating suppression of alkaline–phosphatase activity and extracellular matrix mineralization in osteoblastic culture on scaffolds with bacterial co-incubation. These results indicate that NAC can functionalize a scaffold with anti-infective capabilities, thus assisting healing of soft and hard tissues.

Keywords
Anti-oxidant; Bone regeneration; Streptococci; Multi-functionalization; Staphylococci; Tissue-engineering
First Page Preview
The inhibition of infection by wound pathogens on scaffold in tissue-forming process using N-acetyl cysteine
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us
Publisher
Database: Elsevier - ScienceDirect
Journal: Biomaterials - Volume 32, Issue 33, November 2011, Pages 8474–8485
Authors
, , , ,
Subjects
Physical Sciences and Engineering Chemical Engineering Bioengineering
Get Full-Text Now
Don't Miss Today's Special Offer
Price was $35.95
You save - $31
Price after discount Only $4.95
100% Money Back Guarantee
Full-text PDF Download
Online Support
Any Questions? feel free to contact us